Given a null and alternative hypothesis, this function finds the
lowest sample size such that a design with optimal progression criteria (as
determined by the function opt_pc
) satisfies upper constraints on three
operating characteristics.
Usage
tout_design(
rho_0,
rho_1,
alpha_nom,
beta_nom,
gamma_nom = 1,
eta_0 = 0.5,
eta_1 = eta_0,
tau = c(0, 0),
max_n = NULL,
n = NULL,
x = NULL,
sigma = NULL
)
Arguments
- rho_0
null hypothesis.
- rho_1
alternative hypothesis.
- alpha_nom
nominal upper constraint on alpha.
- beta_nom
nominal upper constraint on beta.
- gamma_nom
nominal upper constraint on gamma. Defaults to 1.
- eta_0
probability of an incorrect decision under the null hypothesis after an intermediate result. Defaults to 0.5.
- eta_1
probability of an incorrect decision under the alternative hypothesis after an intermediate result. Defaults to eta_0.
- tau
two element vector denoting lower and upper limits of the effect of adjustment.
- max_n
optional upper limit to use in search over sample sizes.
- n
optional sample size (optimised if left unspecified).
- x
optional vector of decision thresholds (optimised if left unspecified).
- sigma
standard deviation of outcome. If left unspecified, a binary outcome is assumed.
Value
An object of class tout
, which is a list containing the following components:
valid
boolean indicating if the nominal constraints are met.
n
sample size.
thesholds
numeric vector of the two decision thresholds.
alpha
attained value of operating characteristic alpha.
beta
attained value of operating characteristic beta.
gamma
attained value of operating characteristic gamma.
Examples
rho_0 <- 0.5
rho_1 <- 0.7
alpha_nom <- 0.05
beta_nom <- 0.2
tout_design(rho_0, rho_1, alpha_nom, beta_nom)
#> Three-outcome design
#>
#> Sample size: 37
#> Decision thresholds: 23 23
#>
#> alpha = 0.04943587
#> beta = 0.1929043
#> gamma = 1
#>
#> Hypotheses: 0.5 (null), 0.7 (alternative)
#> Modification effect range: 0 0
#> Error probability following an intermediate result: 0.5 0.5
# Allowing for adjustment effects:
tout_design(rho_0, rho_1, alpha_nom, beta_nom, tau = c(0.08, 0.12))
#> Three-outcome design
#>
#> Sample size: 145
#> Decision thresholds: 69 82
#>
#> alpha = 0.04819701
#> beta = 0.199825
#> gamma = 0.3574197
#>
#> Hypotheses: 0.5 (null), 0.7 (alternative)
#> Modification effect range: 0.08 0.12
#> Error probability following an intermediate result: 0.5 0.5
# Allowing for different error probabilities following a pause decision
tout_design(rho_0, rho_1, alpha_nom, beta_nom, eta_0 = 0.3)
#> Three-outcome design
#>
#> Sample size: 32
#> Decision thresholds: 19 21
#>
#> alpha = 0.04983493
#> beta = 0.1995952
#> gamma = 0.7427826
#>
#> Hypotheses: 0.5 (null), 0.7 (alternative)
#> Modification effect range: 0 0
#> Error probability following an intermediate result: 0.3 0.3
# Designs for continuous outcomes:
tout_design(rho_0 = 0, rho_1 = 0.4, alpha_nom, beta_nom, sigma = 1)
#> Three-outcome design
#>
#> Sample size: 39
#> Decision thresholds: 1.55615 1.748788
#>
#> alpha = 0.05
#> beta = 0.2
#> gamma = 0.9292477
#>
#> Hypotheses: 0 (null), 0.4 (alternative)
#> Standard deviation: 1
#> Modification effect range: 0 0
#> Error probability following an intermediate result: 0.5 0.5